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1. Overview
In the main paper, we propose MonoInstance, which is a
general approach that explores the uncertainty of monoc-
ular depths to provide enhanced geometric priors for neu-
ral rendering. Our approach can be applied upon different
multi-view neural rendering and reconstruction methods to
enhance the monocular priors for better neural representation
learning. This supplementary material provides implemen-
tation details, additional ablation studies, discussions and
additional visualization results of reconstruction and novel
view synthesis. All the sections are organized as follows:
• Section 2 provides implementation details of multi-view

consistent segmentation, background identification, selec-
tion of nearby views and the silhouette loss in 3D Gaus-
sians.

• Section 3 provides additional ablation studies on the
weight of instance mask constraint and the usage of normal
priors.

• Section 4 discusses the limitations and future works of our
method.

• Section 5 provides additional visual comparisons on vari-
ous benchmarks.

2. Implementation Details
Multi-view consistent segmentation. Inspired by
MaskClustering [20], we utilize a graph-based clustering
algorithm to achieve multi-view consistent instance segmen-
tation. Specifically, we first obtain instance segmentation
on each image using [13]. And then we use Chamfer Dis-
tance (CD) of the point clouds from back-projected instance
depths, to measure the similarity between instances from
different views. We initialize each instance from all views
as a graph node, and consider the CD between two instances

*The corresponding author is Yu-Shen Liu.
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Figure 1. Visualization of instance segmentation. The second row
is the raw segmentation on individual images, while the third row is
the segmentation after applying multi-view consistent segmentation
algorithm.

as the edge weight between two nodes. Iterative graph clus-
tering [15] is then applied to partition the graph nodes into
instance clusters, thereby achieving multi-view consistent in-
stance segmentation. The key difference between MaskClus-
tering and our implementation lies in the use of monocular
depths, rather than ground truth depths, for back-projecting
instances into world coordinate 3D space. The monocular
depths are pre-aligned with the rendered depths. Although
the monocular depths may not be 100% accurate, we find
that the similarity calculation based on CD is robust to han-
dle noise in the point clouds and does not significantly affect
the segmentation results. The visualization of segmentation
on individual images and the multi-view consistent segmen-
tation results are shown in Fig. 1, which indicates our ability
of accurately segmenting instances of varying scales within
the scene. We also visualize two segmented instance masks
in Fig. 2 to demonstrate the effectiveness of our multi-view
consistent segmentation algorithm.
Background segmentation. Existing methods [12, 17, 18]
generally assume that the background areas of indoor scenes,
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Figure 2. Visualization of the instance masks and the corresponding
images.

such as walls and floors, are reliable. This is because the
monocular priors are generated by a pre-trained neural net-
work, which has a strong smooth inductive bias. Further-
more, smooth regions exhibit similar and simple feature
patterns, enabling the network to more effectively predict
monocular cues. Therefore, we propose to directly apply
monocular priors to the background areas of indoor scenes,
while estimating uncertainty for objects within the scene. To
this end, we utilize state-of-the-art semantic segmentation
models [6, 14] to segment the background areas in indoor
scenes. Specifically, for each image, we first use Ground-
ing DINO [8] with a pre-defined prompt to obtain bounding
boxes for the background areas. The prompt is defined as
“room background, ceiling, floor.” We then use SAM [6] to
obtain masks for the areas within the bounding boxes. Sub-
sequently, for multi-view consistent instance segmentation,
we identify those instances that fall within the background
masks in most frames, and set the uncertainty of these in-
stances to zero.

Selection of nearby views. For high-uncertainty areas
(U(u, v) > 0.8 in our implementation) where monocular pri-
ors are unreliable, we aim to mine more reliable photometric
consistency as a remedy. To this end, we warp sampling
points on the ray emitted from reference view to the instance
mask in the nearby view, and accumulate the filtered pro-
jected points to obtain the final color as additional constraint.
Selecting appropriate nearby views for the reference view is
vital in this process. Fortunately, the multi-view consistent
instance segmentation provides us with strong prior infor-
mation to achieve this, as illustrated in Fig. 3. Specifically,
for an instance mask area Si

r with label i in the reference
view Ir, we emit a ray Or towards the center pixel of the
bounding box (BBX) of the instance mask area Si

r. For all
other views {Ij}Nj=1 which contain the same instance i, we
then emit rays {Oj}Nj=1 towards the center pixel of the BBX
of the mask area Si

j in each view. We then calculate the dis-
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Figure 3. Illustration of selecting nearby views.

tances {δj}Nj=1 and the angles {θj}Nj=1 between Or and all
{Oj}Nj=1. The appropriate nearby views are selected based
on whether the distances and angles are within specified
thresholds,

Ω(Ij) =

{
1 δj ∈ [δlb, δub] ∧ θj ∈ [θlb, θub]

0 otherwise
. (1)

In our practice, we set δlb = 10◦, δub = 60◦, θlb =
0, θub = 0.04. Comparing to existing methods which rely on
visibility or image features [2, 3, 9], our strategy provides a
more robust and effective solution for exploring photometric
consistency cues in multi-view instances.
Lsil in 3D Gaussians. Since 3D Gaussians can be directly
splatted onto the image plane without any sampled points
in 3D space, we design a variant of our instance mask con-
straint (Sec. 3.3 in the original paper), encouraging the
projected instance depth points on the nearby view to move
towards the instance mask in the nearby view, as illustrated
in Fig. 4. Specifically, for a pixel (u, v) in the instance mask
area Si

r with high uncertainty, we back-project it into 3D
space using the rendered depth, and then project it onto the
nearby view{Ij}Nj=1. The loss function is defined as the
shortest distance from the projected point to the instance
mask silhouette ∂Si

j ,

Lsil(u, v) =

{
0 πj(p(u, v)) ∈ Si

j

d(πj(p(u, v)), ∂S
i
j) πj(p(u, v)) /∈ Si

j

,

(2)
where p(u, v) is the back-projected point of pixel (u, v) and
πj(p(u, v)) is the projected pixel of p(u, v) on the nearby
view Ij . d(·, ·) denotes the Euclidean distance between two
pixels on the image.

3. Ablations
Weight of instance mask constraint term. We adaptively
set hyperparameters according to scene specifications such
as size, which works well without a need of manual tuning
in different datasets. For example, in the confidence com-
putation step, the query ball radius is linearly related to the
bounding box size of the fused point cloud, as depicted in
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Figure 4. Illustration of instance mask constraint in 3D Gaussians.
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Figure 5. Effect of the mask constraint weight λ2 in Eq. (10).

Image Monocular depth Monocular normal Uncertainty map

Figure 6. Visualization of monocular depth, monocular normal
and our estimated uncertainty map. Monocular depths and normals
tend to produce similar patterns on the same structures, therefore
the uncertainty map can be universally applied to both depth and
normal priors.

Table 1. Ablation study of adaptive depth and normal prior loss on
all scenes of ScanNet dataset.

Adaptive Depth Adaptive Normal CD↓ F-score↑
0.041 0.749

✓ 0.038 0.763
✓ 0.039 0.772

✓ ✓ 0.037 0.786

Eq. (6) in the original paper. As for the loss terms, the
values of λ1, λ3, λ4 are consistent with baseline. Here we
evaluate the different choice of the weight λ2 in Eq. (10) in
the original paper, as illustrated in Fig. 5. When λ2 is small,
the optimization relies solely on photometric loss, which is
insufficient to recover geometric details such as chair legs
and the lamp on the piano. When λ2 is too large, the over-
fitting of colors from nearby views misleads the geometry,
such as the piano legs.
Normal priors. Although we use monocular depth to mea-
sure the uncertainty, the evaluated uncertainty maps can also
be applied to adaptive normal prior loss. This is because
depth and normal priors are homologous dual outputs from
the same foundational model, thus exhibiting similar patterns
on the same structures. Fig. 6 provides an illustration, where
the monocular depth map and normal map show similar de-
generation on the thin structures, such as the chair legs. We
further conduct an ablation study to demonstrate the effec-
tiveness of the uncertainty map on depth and normal priors,
as reported in Tab. 1. “Adaptive Depth” denotes employ-
ing the uncertainty maps as weights on the depth loss, and
similarly for “Adaptive Normal”. Numerical comparisons
indicate that our uncertainty maps can improve the quality
of both depth and normal priors.

We notice that the latest multi-view stereo method,
DUSt3R [19], can estimate consistent depth maps and confi-
dence maps for each depth from a given set of unconstrained
images using data-driven priors. However, DUSt3R can not
directly predict uncertainty according to multi-view depth
consistency, which is merely based on single views. This
limits the uncertainty estimation on unseen scenes in which
data-driven prior may not generalize well.

Image Erroneous Segmentation

Figure 7. Failure case. The instance segmentation erroneously
segment the two chairs into one instance.

4. Discussion
Limitations. We utilize multi-view consistent instance seg-
mentation to evaluate the uncertainty maps, hence the per-
formance of uncertainty maps might be impacted by the
accuracy of segmentation. Existing instance segmentation
algorithms sometimes suffer from issues such as part missing
and instance merging [7, 11]. As shown in Fig. 7, the two



chairs are erroneously segmented into one instance, which
was identified by the multi-view consistent instance segmen-
tation algorithm. In such cases, the affected instance in this
frame is excluded in the multi-view segmentation results,
and the uncertainty of this instance is set as 0.5. However,
this failure case does not significantly harm the final results,
because it merely weakens the constraints of the monocular
priors and the multi-view photometric consistency.
Future works. One of the future works is to explore the op-
timization of instance segmentation along with the training
process, to correct the erroneous in instance segmentation,
similar as ManhattanSDF [4]. Another future work is to
explore the integration of powerful generative models with
multi-view neural rendering frameworks to improve the re-
construction in areas with little viewpoints coverage.

5. Results
5.1. Comparisons
We provide additional visual comparisons across various
multi-view neural rendering benchmarks. Fig. 8 displays
the comparisons in dense-view reconstruction task on Scan-
Net [1] and Replica [16] datasets. Fig. 9 provides compar-
isons in sparse-view reconstruction task on DTU [5] dataset,
and Fig. 10 shows comparisons in sparse novel view syn-
thesis task on LLFF [10] dataset. The visual results further
demonstrate the versatility and superiority of our method
across different neural rendering tasks and datasets.

5.2. Video Display
We made a video in the supplementary materials to provide
additional examples of the results of 3D reconstruction and
novel view synthesis. In the first part of the video, we circle
around the indoor scenes from the dense-view reconstruction
experiment on “scene0616 00” in ScanNet [1] dataset and
“office0” in Replica [16] dataset, respectively. In the second
part, we showcase the objects from the sparse-view recon-
struction experiment on “scan40” and “scan105” in DTU [5]
dataset. In the third part, we record surround RGB and depth
videos from sparse-input novel view synthesis on “leaves”
and “room” in LLFF [10] dataset. The results showcase
the superiority performance of our method across different
tasks, demonstrating the effectiveness and universality of
our proposed MonoInstance. Please refer to the the video
for more details.

5.3. Training Time
We report the training time of each module in our method,
as shown in Tab. 2, which demonstrates that our algorithm
does not introduce significant additional overhead. Since our
instance segmentation and uncertainty estimation processes
require aggregating information from all views, the compu-
tational cost is related to the number of viewpoints. Further-

more, since the uncertainty map provides strong knowledge
for multi-view geometry inference, we achieve faster conver-
gence speed than MonoSDF.
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Figure 10. More visual comparisons of sparse-input novel view synthesis on LLFF dataset. Note that we don’t evaluate monocular depths
for test views, therefore we choose the closest viewpoint from the training views to display the estimated uncertainty maps.
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